Оглавление

Введение	3
Глава 1. К вопросу взаимодействия материала конструктивных элементов с водородом высоких давлений и температур	5
1.1. Водород, его характеристики	
и особенности влияния на материал конструкций	5
1.2. Особенности воздействия	
высокотемпературного водорода на материал конструкций	9
1.2.1. Общие характеристики воздействия высокотемпературного водорода	0
1.2.2. Водородная коррозия стальных конструкций	
1.2.3. Защита от воздействия водорода	
Глава 2. Моделирование взаимодействия	
водорода высоких параметров с материалом неравномерно	
прогретых конструктивных элементов	16
(толстостенная труба и круглая пластинка)	10
2.1. Обобщенная модель поведения конструкций	1.0
в условиях водородной коррозии	10
2.2. Модель теплового воздействия и модель воздействия водорода	
как связанная задача термодиффузии	18
2.3. Методика и некоторые методы решения задачи	
термодиффузии водорода высоких параметров	21
2.4. Моделирование распределения температуры	
и водорода по толщине плоской полубесконечной пластинки	
с локальным прогревом	24
2.5. Распределение температуры по толщине стенки толстостенного трубопровода	28
	20
2.6. Распределение концентрации водорода по толщине стенки неравномерно прогретого	
толстостенного трубопровода	30

	2.7. Моделирование распределения температуры	
И	п давления по объему круглой пластинки	33
	2.8. Уравнение кинетики параметра	
	имического взаимодействия	35
	2.9. Расчет кинетики фронта обезуглероживания	
	ю толщине стенки неравномерно прогретой	
	олстостенной трубы	
2	2.10. Упрощенная модель химического взаимодействия	44
I	Глава 3. Моделирование напряженного состояния	
_	зрушения толстостенного трубопровода	
при	различных режимах внешних воздействий	52
3	3.1. Модель деформирования материала	
В	з условиях воздействия водорода высоких параметров	52
3	3.2. Линейное напряженное состояние	53
3	3.3. Сложное напряженное состояние	57
3	3.4. Модель наступления предельного состояния	59
3	3.5. Алгоритмы идентификации модели деформирования	
И	празрушения материалов в условиях водородной коррозии	
П	ю экспериментальным данным	63
3	3.6. Результаты идентификации модели	68
3	3.7. Уравнения напряженного состояния	
	разрушения неравномерно прогретого толстостенного	
Т	рубопровода в условиях водородной коррозии	71
3	3.8. Уравнения напряженного состояния	
	празрушения неравномерно прогретой круглой пластинки	
В	з условиях водородной коррозии	77
	3.9. Алгоритмы расчета напряженного состояния	
	перавномерно прогретого толстостенного трубопровода	
	з условиях водородной коррозии	0.4
	при различных режимах внешних воздействий	84
	3.10. Анализ напряженного состояния	
	перавномерно прогретого толстостенного трубопровода	91
R	с условиях возлеиствия волорола высоких нараметров	91

3.11. Анализ разрушения толстостенного трубопро	вода
в условиях неоднородного теплового поля	
и водородной коррозии	94
Заключение	96
Приложение П1	
Список использованной литературы	108