	Предисловие	6
	Введение	7
	Часть I. Исследование статических и динамических	
	характеристик преобразователей напряжения пони-	
	жающего типа	22
1.	ИПН понижающего типа без ООС	22
	1.1. Анализ переходных и установившихся процессов в им-	
	пульсных преобразователях напряжения	23
	1.1.1. Апериодический режим	28
	1.1.2. Граничный режим	30
	1.1.3. Колебательный режим	32
	1.2. Исследование усредненной составляющей тока дроссе-	
	ля и выходного напряжения	34
	1.3. Исследование пульсаций тока дросселя и выходного	
	напряжения	37
	1.4. Режим прерывистого тока дросселя	46
	1.5. Выводы	49
2.	Импульсные преобразователи напряжения понижа-	
	ющего типа с ООС	51
	2.1. ИПН с ООС по выходному напряжению	57
	2.2. ИПН с ООС по выходному напряжению и току дрос-	
	влээ	59
	2.3. ИПН с ООС по выходному напряжению и току кон-	
	денсатора	61
	2.4. Выводы	63
3.	Линейные методы расчета частотных характеристик	
	ИПН понижающего типа с ООС	64
	3.1. Метод усреднения и линеаризации	67
	3.2. Метод эквивалентной замены импульсной части ИПН	73
	3.3. Выводы	78
4.	Методы расчета и измерения коэффициента переда-	
	чи петлевого усиления ИПН понижающего типа с	
	$footnotemark{OOC}$	79
	мкнутого контура	79

	4.1.1. Измерение в линейной модели	79
	4.1.2. Модифицированная модель измерения	86
	4.1.3. Измерение в импульсной модели	88
	4.2. Измерение петлевого усиления в ИПН методом замкну-	
	того контура	101
	4.2.1. Измерение в линейной модели	101
	4.2.2. Измерение в импульсной модели	104
	4.2.3. Измерение физического макета	111
	4.2.4. Измерение через внешние характеристики	114
	4.2.5. Метод двойной инжекции с обнулением	117
	4.2.6. Метод последовательной инжекции напряжения и	
	тока	118
	4.2.7. Метод Тиана	121
	4.2.8. Модифицированный метод последовательной ин-	
	жекции напряжения и тока	124
	4.3. Измерение петлевого усиления в ИПН с двухконтур-	
	ной ООС	125
	4.4. Новые бестрансформаторные методы прямого измере-	100
	ния петлевого усиления ИПН	136
	4.4.1. Метод инжекции тока	
	4.4.2. Бестрансформаторная инжекция напряжения	
	4.5. Выводы	146
5 .	Оценка погрешности метода усреднения и линеари-	
	зации для импульсного преобразователя напряжения	
	понижающего типа	148
	5.1. ИПН с одноконтурной ООС	148
	5.2. ИПН с двухконтурной ООС	161
	5.3. Выводы	170
6.	Влияние пульсаций выходного напряжения ИПН по-	
	нижающего типа на коэффициент стабилизации вы-	
	ходного напряжения и устойчивость ИПН	172
	6.1. Коэффициент передачи ШИМ-модулятора без учета	
	пульсаций выходного напряжения	175
	6.2. Коэффициент передачи ШИМ-модулятора с учетом	
	пульсаций выходного напряжения	176
	6.3. Исследование влияния резистивных потерь в конден-	
	саторе СФ с характеристиками Чебышева и Баттер-	
	ворта на устойчивость и коэффициент стабилизации	
	ИПН	180
	6.4. Инженерная методика расчета коэффициента стабили-	10:
	зации ИПН	184

	6.5. Коэффициент передачи ШИМ-модулятора в ИПН с	
	ООС по выходному напряжению и току дросселя	188
	6.6. Коэффициент передачи ШИМ-модулятора в ИПН с	
	ООС по выходному напряжению и току конденсатора	190
	6.7. Выводы	193
7.	Методика проектирования ИПН понижающего типа	
	с однозвенным сглаживающим фильтром	194
	7.1. Расчет сглаживающего фильтра	194
	7.2. Расчет цепи коррекции в ИПН с ООС по выходному	
	напряжению	196
	7.2.1. Инерционное звено (тип 1)	200
	7.2.2. Пропорционально-инерционное (ПИ) звено (тип 2).	210
	7.2.3. Пропорциональное интегро-дифференцирующее	
	(ПИД) звено (тип 3)	221
	7.2.4. Синтез звена коррекции для получения требуемого	990
	коэффициента передачи петлевого усиления	230
	напряжению и току дросселя	232
	7.3.1. Коррекция в контуре по выходному напряжению	202
	(управление по максимальному току дросселя)	246
	7.3.2. Коррекция в контуре по выходному напряжению и	
	контуре по току дросселя (управление по среднему току	250
	дросселя)7.4. Расчет цепи коррекции в ИПН с ООС по выходному	256
	напряжению и току конденсатора	268
	7.4.1. Коррекция в контуре по выходному напряжению	273
	7.4.2. Коррекция в контуре по выходному напряжению и	213
	контуре по току конденсатора	277
	7.5. Выводы	283
	Часть II. Исследование распределенной системы элек-	
	тропитания	286
8.	Работа фильтра на ИПН	286
	8.1. Расчет входного сопротивления преобразователя	290
	8.2. Условия возникновения автоколебаний	291
	8.2.1. ИПН с однозначной ВАХ	292
	8.2.2. ИПН с двузначной ВАХ	297
	8.3. Измерение входного сопротивления преобразователя.	298
	8.4. Экспериментальная проверка частотного критерия	
	устойчивости и режимов генерации системы «входной	
	фильтр — преобразователь»	299
	8.4.1. Описание макета	300
	8 4 9 Диз има перильтатов изменения	302

8.5. Расчет входного сопротивления ИПН понижающего	
типа с различными контурами ООС и звеньями кор-	
рекции	309
8.5.1. ИПН с ООС по выходному напряжению	309
8.5.2. ИПН с ООС по выходному напряжению и току	
дросселя	316
8.5.3. ИПН с ООС по выходному напряжению и току	207
конденсатора	327
8.6. Выводы	332
9. Расчет сетевых фильтров радиопомех для импульс-	005
ных источников электропитания	335
9.1. Методика расчета сетевых ФРП для ИПН	335
9.1.1. Методика расчета фильтра радиопомех	338
9.1.2. Моделирование фильтра на ЭВМ	341
9.1.3. Расчет и моделирование сетевого фильтра радиопо-	242
мех для источника бесперебойного питания	343
та ФРП	350
9.1.5. Специфика расчета сетевых ФРП с учетом обес-	
печения устойчивой работы системы «входной фильтр —	
преобразователь»	354
9.2. Расчет входного фильтра с требуемым подавлением и	
выходным сопротивлением	354
9.2.1. Однозвенный фильтр	
9.2.2. Двухзвенный фильтр	359
9.3. Методы снижения тока утечки в ФРП	377
9.3.1. Пассивный способ компенсации для однофазной	 -
Сети	378
9.3.2. Активный способ компенсации для трехфазной сети с изолированной нейтралью	393
9.3.3. Пассивный способ компенсации для трехфазной сети	000
с изолированной нейтралью	395
9.3.3. Защита обслуживающего персонала от токов утечки	
в трехфазной сети с изолированной нейтралью	
9.4. Выводы	400
10. Работа ИПН на комплексную нагрузку	403
10.1. Расчет и измерение выходного сопротивления преоб-	
разователя	405
10.2. Условия возникновения автоколебаний	406
10.3. Расчет выходного сопротивления ИПН понижающего	
типа с различными контурами ООС и звеньями кор-	
рекции	418

10.3.1. ИПН с ООС по выходному напряжению	419
10.3.2. ИПН с ООС по выходному напряжению и току	
дросселя	424
10.3.3. ИПН с ООС по выходному напряжению и току	490
конденсатора	432
10.4. Петлевое усиление ИПН, работающего на комплекс-	439
3 13 3	
	446
	448
11.1. Устойчивость с учетом промежуточных фильтров	449
11.1.1. Режим малого сигнала	451
11.1.2. Режим большого сигнала	460
11.2. Особенность работы ИПН на ИПН	465
11.3. Выводы	468
Приложения	470
П1. Элементы теории четырехполюсников	470
П1.1. Уравнения передачи и матрицы параметров четы-	
рехполюсников	470
П1.2. Связь матрицы А-параметров с внешними характе-	
ристиками четырехполюсника	472
П1.3. Параметры простейших четырехполюсников	473
П1.4. Соединения четырехполюсников	473
П2. Расчет частотных характеристик ИПН в программах	
· · · -	476
Π2.1. Micro-CAP	477
Π2.2. LTspice	487
Π2.3. SimOne	491
Π2.4. SIMetrix/SIMPLIS	498
Π2.5. FASTMEAN	502
П2.6. Выводы	506
ПЗ. Измерители частотных характеристик ИПН	507
Π3.1. Venable Instruments	508
ПЗ.2. NF Corporation	511
Π3.3. Newtons4th Ltd	512
П3.4. Powertek	513
ПЗ.5. Solartron Analytical	513
ПЗ.6. AP Instruments	514
ПЗ.7. OMICRON Lab	510
ПЗ.8. Отечественный ИЧХ	515
ПЗ.9. Отечественный измерительный комплекс	518
-	524